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ABSTRACT

A method of calculation is presented that allows the

simulation of the time-dependent three-dimensional mo-

tion of thin liquid layers on solid substrates for systems

with finite equilibrium contact angles. The contact an-

gle is a prescribed function of position on the substrate.
Similar mathematical models are constructed for sub-

strates with a pattern of roughness. Evolution equations

are given, using the lubrication approximation, that in-

clude viscous, capillary and disjoining forces. Motion

to and from dry substrate regions is made possible by
use of a thin energetically-stable wetting layer. We sim-

ulate motion on heterogeneous substrates with periodic

arrays of high contact-angle patches. Two different prob-
lems are treated for heterogenous substrates. The first

is spontaneous motion driven only by wetting forces.

If the contact-angle difference is sufficiently high, the

droplet can find several different stable positions, de-

pending on the previous history of the motion. A second

simulation treats a forced cyclical motion. Energy dissi-

pation per cycle for a heterogeneous substrate is found

to be larger than for a uniform substrate with the same

total energy. The Landau-Levich solution for plate re-

moval from a liquid bath is extended to account for a

pattern of roughness on the plate.

1. INTRODUCTION

Wetting and capillary considerations during the slow

motion of liquids on solid substrates are important in

both the technological and natural worlds. Applications
include the spreading behavior of liquid coatings, as

well as flows in oil reservoirs, chemical reactors and

heat exchangers. Some biological application areas are

motions in the tear film on the cornea of the eye, flows

on liquid covered membranes in the lungs, and the gen-

eral area of cell motility, where cell motions have many

of the features of inert liquid droplets [ 1]. The spreading

properties of agrochemicals such as pesticides and in-
secticides are important determinants of their effective-

ness. Capillary forces are often dominant in problems

of small physical dimensions; however they can also be

important for large-scale phenomena when body forces

are very weak, as in the microgravity environment of

orbiting satellites in space.

Application of a wettability pattern or a pattern of

roughness to the walls of vessels containing liquid is a

possible strategy for controlling the position of the liq-

uid in the microgravity environment of orbiting space

vehicles. In the absence of gravity, liquid in a partially-

filled container can assume many different configura-

tions. Small imposed accelerations can cause large dis-

placements of the liquid which is undesirable for a va-

riety of reasons. Contact line dynamics will play an

important role, either by "pinning" the location of the

liquid on the wall or by dissipating the kinetic energy

imparted to the liquid. The present results suggest that

different wall wettability patterns may accomplish one

or the other of these objectives.

We will briefly outline mathematical and numerical

procedures for liquid motions on chemically heteroge-

neous or roughened substrates. These employ the long-

wave or "lubrication" approximation. More complete
information can be found elsewhere [2,3,4].

2. THE MATHEMATICAL MODEL

Integral mass conservation is

ht = -V • q + wi(.r, y, t) . (2.1)

Here ts is the thickness of the liquid layer and Q is the
two-dimensional areal flux vector defined as

q = (_l,v) dz

where u and '_"are velocity components in the :r and y di-

rections respectively. Likewise V is a two-dimensional

operator with respect to x and y. wi is a local injection

rate that is an input function of substrate position and
time.

Under the assumptions of lubrication theory [5,6],

i.e. the motion is sufficiently slow that inertial forces

may be neglected and the free surface is inclined at a

small angle relative to the substrate, the momentum equa-

tion for an assumed Newtonian liquid may be integrated
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to yield

q = -+(h3Vp) . (2.2)

Here p is the viscosity and the pressure p is independent
of the normal coordinate z. The no-slip condition for the

velocity has been applied on the substrate and the liquid

free surface is stress-free. The pressure in the liquid is
given by

p = -ah" - II _ -aV_-h - II (2.3)

and the pressure above the liquid is taken to be zero

without loss of generality. The first term on the right

is an approximation to the free-surface curvature when

the surface slope is small. The error in this curvature ap-

proximation is proportional to the square of the surface
inclination, a is surface tension and the so-called dis-

joining pressure is given by the two-term model [2,3,7]

n=B/\ h] \T " (2.4)

/3 and the exponents n and m are positive constants with

7_> m > 1. The local disjoining energy density

fh he(d)(h) ------ II(h')dh' (2.5)

has a single stable energy minimum at the thin wetting-
layer thickness h = It,. A local force balance near an

apparent contact line gives

acosO,, = a - e_)(_) (2.6)

which is the disjoining-model equivalent of the Young-
Laplace equation.

The equilibrium contact angle is taken to be an ar-

bitrarily prescribed function of position and the evolu-

tion equation for flow over a heterogeneous substrate
becomes

Each pressure component on the right of equation

(2.3) may be identified with an integrated energy com-

ponent. The free-surface energy is proportional to the

area of the liquid surface and is given by

ff(1 )E I_ =a 1 dA _ Vh.VhdA

(2.8)
whcre A is thc total area of the substratc, and "_ is thc

angle bctween the normal to thc surface and thc normal
to the substratc. Thc total disjoining energy is

E,,=ff ¢'_d)d.4 . (2.9)

The global energy change equation is

L-(,,) _ _(El-1 + E(a_) + It" (2.10)

which is the statement that the rate of viscous working

is equal to the rate of decrease of the stored, or poten-

tial, energy components p/us the rate of working on the

system. Here

II =//p u,_ dA (2.11)

may be recognized as the rate of working on the system

by means of injection wi. For cyclical motions, the drop

shape returns to its original configuration and there is no

change, over a cycle, in E I'_! or E _d). In that case the
total viscous work done is the time integral of il" or

J pdI"

where 1_ is drop volume, dI" = u,i dA and the special

integral sign denotes a full cycle.

For the quasi-three dimensional problems treated here,
numerical solutions use finite difference methods and an

alternating direction implicit (ADI) technique is imple-

mented. Developed originally for second-order elliptic

and parabolic systems [8], ADI uses alternating sweeps
in each direction and only a banded system of equations

needs to be solved to update the discrete set of hi,j val-
ues.

o

1,,_- (vv- h+

(n - 1)(m- 1) [., fh'.'
hm,,,,,)])]

(2.7)

It is possible to augmented this equation with gravity

and other force terms as additional driving mechanisms.
[31

3. VALIDATION

The model has been calibrated by comparison with

several experiments. Axisymmetric spreading of a droplet
on a high-energy [i.e. small contact angle] uniform sub-

strate has been measured by several investigators and

general agreement with Tanner's Law [9]

A _ l"_tr'tlt5
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hasbeenverifed.HereA is drop area, V is volume and

t is time. It can be shown that the solution for h(r, t) is

self-similar and the drop central height must also follow

a power law in time [3]. Figure 1 shows a compari-

son of the similarity solution assuming a wetting layer

of 30 nm thickness which agrees with experimental re-

sults [10]. Also shown is an axisymmetric simulation

on a uniform low-energy substrate with a finite contact

angle. It is seen that the power-law is followed until

the drop has almost stabilized at a dimensionless cen-

tral height h<. _ 1. This spreading behavior, with fi-

nite contact angle, has been observed experimentally by

Zosel [11]. Another simulation, shown as symbols in

the Figure, assumes the substrate has a pattern of wet-

tability as in Fig. 5. The substrate area-average wetta-

bility is the same as for the low-energy uniform case.

It can be seen that the spreading is unaffected by the

contamination pattern until the droplet slows and ulti-

mately stops spreading. Three-dimensional simulations

are limited to thick precursor layers because of the need

to adequately resolve details in the contact region. Too

thick a precursor layer results in a relatively weak speed

discrepancy; this discrepancy is in accordance with the
predicted inverse logarithmic dependence on the precur-

sor thickness [ 12].

Figure 2: Video images taken from an experiment where

a glycerin drop is placed near the center of a cross of 0. ]

cm Teflon tape on a glass slide. These pictures may be

compared with the simulation shown in Fig. 3.
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Figure l: Drop central height hc versus time, showing

the similarity range for axisymmetric spreading. The

initial drop height is 10. The straight line on this log-
log plot is h<, -- 0.75t 1/'5 which matches experiments.
The solid curve is the calculated behavior for finite con-

tact angle on a uniform substrate, while the lines-points

curve is calculated for the square wettability pattern.
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We have performed a laboratory experiment to com-

pare with drop spreading simulations [3]• A 26 ttl drop

of glycerin was placed near the center of a cross of 1

Figure 3: Contour plots from a computer simulation of

break-up of a liquid drop placed on a "cross" of high-
contact-angle material.
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Figure 5: The substrate wettability patterns used in this

study. The dark regions have larger values of contact an-

gle than the surrounding field. (a) Isolated spot pattern;

(b) Checkerboard pattern.

Figure 4: Energy components versus time from the

drop-on-cross simulation.

mm Teflon tape that had been fixed to a horizontal glass

slide. Wetting forces cause the drop to break up into un-

equal fragments as shown in Fig. 2. Simulation results,

in Fig. 3, show detailed agreement with the experiment.

However time-scale corrections need to be applied be-

cause (i) the simulation precursor layer is overly large,

and (ii) the contact angles in the experiment are beyond

the range of quantitative validity of the small-slope lu-

brication approximation. Energy component variation,

from the simulation, is given in Fig. 4. The Bond num-
ber/3o = pgR_-/_ = 2.5 using the stabilized radius R

for the drop on glass. The gravitational effect is quite
minor, however, as can be seen in the Figure. Note that

the motion proceeds in a "jerky" manner that is charac-

teristic of capillary driven motions on nonuniform sub-

strates. Each drop disconnection is reflected as a rapid

decrease in the substrate energy.

4. HYSTERETIC MOTIONS ON HETEROGENEOUS

SURFACES

Simulations have been performed to investigate the

dissipation of energy when a liquid moves on mixed-
wettable substrates. Again we consider the motion of a

drop, both in spontaneous motion, driven only by wet-
ting forces, and also in a periodic forced motion. Sev-

eral periodic patterns of wettability have been consid-

ered, two of which are shown in Fig. 5. The equilibrium

contact angle 0_.is larger on the dark patches than on the

surrounding field. Numerical procedures for generating
these and other patterns, including slight smoothing at

patch boundaries to maintain derivative continuity, are

given in [21.

Figure 6 shows two different stable drop shapes ob-

tains by allowing a drop to advance outward (left) and

recede (right) from a starting profile that was either steeper

or shallower than the equilibrium shapes. The contact

angle on the isolated patches is about four times larger

than on the field. Effective advancing and receding con-

tact angles may be calculated using averages of local
values; the effective contact angle ratio for this case is

tg,_/Or = 1.14. This ratio is a measure of contact an-
gle hysteresis. Figure 7 is an instantaneous picture dur-

ing the receding simulation. It shows transienl interior

dewetting due to an instability near the receding contact
line.

A schematic diagram for a notional experiment to

explore energy dissipation in forced motions in shown

in Fig. 8. By pumping liquid in and out via a syringe,

the droplet can be forced to periodically traverse the

wettability pattern. Pressure-volume plots from numer-

ical simulation are shown in Fig. 9 where motions on
a checkerboard wettability pattern are compared with

a uniform substrate of the same average energy. The

area of each hysteresis loop is the input work required

to drive a cycle of the motion. Additional dissipation

results from the presence of the pattern, the effect be-

ing more important at low speeds or long cycle times.
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Figure 6: Contour plots of final static shapes for ad-
vanced (left) and receded (right) drops in spontaneous

motion. The wettability pattern is also shown. The dif-
ference between the two cases is a measure of contact

angle hysteresis.
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Figure 7: A frame during recede. A de-wetting insta-

bility leads to interior dry patches near the receding pe-

riphery. This is a transient effect and the drop continues

to recede until the final configuration, shown in Fig. 6,
is attained.
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Figure 8: Schematic diagram of a notional experiment

to investigate energy dissipation in a cyclic motion of a

drop.

Figure 9: Dimensionless pressure P versus volume 1"

showing hysteresis loops in cyclical motion. The solid
line is for a uniform substrate, dashed line is for a

checkerboard wettability pattern. The symbol curve is

for the non-dissipative quasi-static theory with equation
P = 27t-1/31"-1/3 ,

For comparison, a quasi-static non-dissipative curve, for
motion on a uniform substrate, is also shown.

5. MOTIONS ON A SURFACE WITH A PATI'ERN

OF ROUGHNESS

It is possible to include a roughened substrate in the
lubrication formulation. It may be shown [4] that the

evolution equation needs only be modified by inclusion

of the substrate shape function in the "permeability," i.

e. the factor of proportionality between the flux and

the pressure gradient. It is often convenient to allow
the substrate to move with time while the computational

window is fixed to the liquid free surface.

A model problem is an extension of the well-known

Landau-Levich [13] problem for the withdrawal of a

moving plate from a bath of liquid. We consider the

plate to have a periodic pattern of roughness or "cells"

as shown in Fig. 10. The plate moves with constant

speed U to the right while the liquid meniscus is pinned
at the left end of the computational window. While

the Landau-Levich result is time independent, here the

problem becomes time periodic with a period equal to
the cell passage time. All dimensional constants can be

absorbed by scaling. We let ho be a measure of coat-

ing thickness, such as the cell depth and substrate coor-

dinates (z, y) are made dimensionless using the length
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Figure 10: A periodic square array of cells on the sub-
strate.

A function hx (x, y, t) represents the moving substrate

and the permeability s in (5.2) is simply s = (h - h.1)3.

As seen in Fig. 11, the downward pressure of the

meniscus acts so as to "scrape". liquid from the cells.
A certain residual fraction remains m each cell, deter-

mined primarily by the cell geometry. Much greater

work is required to move the plate compared to a smooth-

wall case. The problem is applicable to damping of peri-

odic motions where the wall roughness is a surrogate for

the chemical heterogeneity discussed above. Further de-

tails, including terrestrial applications in the coating and

printing industry, where engraved or "gravure" rollers

are used, are given in [4].
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